Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Atmosphere ; 14(5), 2023.
Article in English | Web of Science | ID: covidwho-20237776

ABSTRACT

Evidence suggests an association between air pollutant exposure and worse outcomes for respiratory viral diseases, like COVID-19. However, does breathing polluted air over many years affect the susceptibility to SARS-CoV-2 infection or severity of COVID-19 disease, and how intense are these effects? As climate change intensifies, air pollutant levels may rise, which might further affect the burden of respiratory viral diseases. We assessed the effect of increasing exposure to PM2.5 (particulate matter = 2.5 microns in diameter) on SARS-CoV-2 susceptibility or COVID-19 severity and projected the impact on infections and hospitalisations over two years. Simulations in a hypothetical, representative population show that if exposure affects severity, then hospital admissions are projected to increase by 5-10% for a one-unit exposure increase. However, if exposure affects susceptibility, then infections would increase with the potential for onward transmission and hospital admissions could increase by over 60%. Implications of this study highlight the importance of considering this potential additional health and health system burden as part of strategic planning to mitigate and respond to changing air pollution levels. It is also important to better understand at which point PM2.5 exposure affects SARS-CoV-2 infection through to COVID-19 disease progression, to enable improved protection and better support of those most vulnerable.

2.
Proceedings of the 17th INDIACom|2023 10th International Conference on Computing for Sustainable Global Development, INDIACom 2023 ; : 1167-1172, 2023.
Article in English | Scopus | ID: covidwho-20233996

ABSTRACT

Viral diseases are common and natural in human it spreads from animals and other humans. It seeks to identify the proper, reliable, and effective disease detection as quickly as possible so that patients can receive the right care. It becomes vital for medical field searches to have assistance from other disciplines like statistics and computer science because this detection is frequently a challenging process. These fields must overcome the difficulty of learning novel, non-traditional methodologies. Because so many new techniques are being developed, a thorough overview must be given while avoiding some specifics. In order to do this, we suggest a thorough analysis of machine learning which is used for the diagnosis of viral diseases caused in humans as well as plans. Predictions are made which is not obvious at the first glance does machine learning will be more helpful in making decisions. The study focuses on the machine learning algorithms for diagnosis of viral diseases for early diagnosis and treatment of viral diseases with greater accuracy. The work helps the researchers and medical professionals for learning and to give treatment for determining the applications of different machine learning techniques run to evaluate the parameters. Through examination of various parameters new machine learning model is proposed understanding the applications of machine learning in viral disease diagnosis like imaging techniques, plant virus diagnosis and the solution for the problem, Covid 19 diagnosis. © 2023 Bharati Vidyapeeth, New Delhi.

3.
Proceedings - 2022 5th International Conference on Electronics and Electrical Engineering Technology, EEET 2022 ; : 1-8, 2022.
Article in English | Scopus | ID: covidwho-20232994

ABSTRACT

Contact tracing is one of the methods used by the government and organizations for controlling viral diseases like COVID-19, which claimed many human lives. Social distancing is advised to everyone to minimize the virus from spreading. This study aims to build a contact tracing tool that monitors social distancing individually using computer vision in real-time. Object tracking by detection is used for individual monitoring with YOLOv4 (You Only Look Once) as the object detector and SORT (Simple Online and Real-time Tracking) as the object tracker. The combination gained an average streaming and detection frame rate of 26 FPS and 10 FPS on NVIDIA's GTX 1650, respectively. It is expected to have more frame rate when used in a more powerful device. Moreover, the system obtained 98.2% accuracy in measuring the distance between individuals. Furthermore, the performance of the QR scanner used in the study attains a 100% success rate and a 98% accuracy in allocating the QR code to the correct owner from the video stream. © 2022 IEEE.

4.
Int J STD AIDS ; : 9564624231179275, 2023 Jun 03.
Article in English | MEDLINE | ID: covidwho-20238847

ABSTRACT

BACKGROUND: People living with HIV (PLWH) report high levels of anxiety. This study assessed the prevalence of COVID-19-related anxiety in PLWH. METHODS: Participants were recruited from two UK HIV clinics (01/03/2020 - 30/05/2022) and asked to complete the Coronavirus Anxiety Scale. The proportion with scores ≥9 (cut-off for dysfunctional pandemic-related anxiety) and ≥1 (reporting of any pandemic-related anxiety) were analysed. RESULTS: 115 PLWH were included, predominantly identifying as male (83.5%, n = 96), white (58.3%, n = 67) and reporting post-secondary education (82.6%, n = 95), with a median age of 51 years (range 22-93). Median CAS score was 0, with 4.4% scoring ≥9 (n = 5). More women scored ≥9 than men (16.7% (n = 3) and 2.1% (n = 2) respectively). Black African (13.6%, n = 3) and Other Ethnic Minority PLWH (25%, n = 2) had a greater proportion of scores ≥9 than White/Asian PLWH (both 0%). SARS-CoV-2 exposure was associated with scores greater than 1 but not greater than 9. CAS score was not associated with lower CD4 (<350 cells/mm3), detectable HIV viral load (≥50 copies/ml), or a history of pre-pandemic anxiety. CONCLUSIONS: Pandemic-related anxiety was low, but we identified a sub-population reporting dysfunctional pandemic related anxiety. Future work should further investigate the psychological impact of the pandemic on this group.

5.
Front Immunol ; 14: 1161149, 2023.
Article in English | MEDLINE | ID: covidwho-20237016

ABSTRACT

Mosquito-borne viral diseases are a group of viral illnesses that are predominantly transmitted by mosquitoes, including viruses from the Togaviridae and Flaviviridae families. In recent years, outbreaks caused by Dengue and Zika viruses from the Flaviviridae family, and Chikungunya virus from the Togaviridae family, have raised significant concerns for public health. However, there are currently no safe and effective vaccines available for these viruses, except for CYD-TDV, which has been licensed for Dengue virus. Efforts to control the transmission of COVID-19, such as home quarantine and travel restrictions, have somewhat limited the spread of mosquito-borne viral diseases. Several vaccine platforms, including inactivated vaccines, viral-vector vaccines, live attenuated vaccines, protein vaccines, and nucleic acid vaccines, are being developed to combat these viruses. This review analyzes the various vaccine platforms against Dengue, Zika, and Chikungunya viruses and provides valuable insights for responding to potential outbreaks.


Subject(s)
COVID-19 , Chikungunya virus , Culicidae , Dengue , Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Humans , Mosquito Vectors , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Vaccines, Attenuated , Dengue/epidemiology , Dengue/prevention & control , Vaccine Development
6.
Infectious Diseases: News, Opinions, Training ; 11(1):21-27, 2022.
Article in Russian | EMBASE | ID: covidwho-2323742

ABSTRACT

COVID-19, caused by the novel SARS-CoV-2 virus, poses major challenges for global public health. The detection of antibodies in blood serum is one of the important methods for diagnostics of COVID-19 patients. The main aim was to study the dynamics of the appearance of neutralizing antibodies and antibodies to the SARS-CoV-2 proteins in COVID-19 patients sera. Material and methods. The blood sera of four groups of people were studied: "intact" donors (blood sera were collected in 2016-2019);patients with a laboratory-confirmed diagnosis of acute respiratory viral infection;patients with influenza (antibodies to the influenza virus have been identified) and patients with a PCR confirmed diagnosis of COVID-19. Blood sera were analyzed in ELISA with commercial kits for detection of IgG to SARS-CoV-2 (N, S) proteins and total antibodies to RBD of protein S and in neutralization test (NT). Results and discussion. Antibodies to SARS-CoV-2 were not detected in paired blood sera of people from groups 1-3 by ELISA and NT. At the time of hospitalization of patients with COVID-19 in the sera of 12 (19%) patients antibodies to SARS-CoV-2 were absent when they were determined by NT and ELISA. In blood sera taken 4-9 days after hospitalization, neutralizing antibodies and antibodies to at least one viral protein were detected in ELISA. Conclusion. At the time of hospitalization, the overwhelming majority of patients had a humoral immune response to the SARS-CoV-2. In the dynamics of observation, the levels of antibodies to SARS-CoV-2 proteins increased, to a greater extent to RBD.Copyright © 2022 Geotar Media Publishing Group

7.
Pakistan Journal of Scientific and Industrial Research Series A: Physical Sciences ; 66(1):103-108, 2023.
Article in English | Scopus | ID: covidwho-2297127

ABSTRACT

Nano thin films and nano coating have been applied in different fields in health care system because of their higher antiviral properties. Additionally, as the world have suffered since December 2019 from Covid-19 situation, different scientists and industrials people have tried to apply nano antiviral films and coatings in our daily life. In this mini review, nano thin film coating procedure by DC sputtering technique has been reviewed, investigated and evaluated by using different materials and device parameters in recent years. This report focuses on device factors that affect the thickness of nano-lhin films for optical and optic electric applications, these parameters including time, temperature, power, pressure and flow rate of gases, the review provides more understanding meaning of the coating procedure by DC sputtering process. © 2023 PCSIR-Scientific Information Centre. All rights reserved.

8.
Water (Switzerland) ; 15(6), 2023.
Article in English | Scopus | ID: covidwho-2295944

ABSTRACT

The analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) gene copy numbers in wastewater samples can provide quantitative information on Coronavirus Disease-19 (COVID-19) cases within a sewer catchment. However, many wastewater-based epidemiology (WBE) studies have neglected virus decay during the wastewater transportation process in sewers while back-calculating COVID-19 prevalence. Among various sewer condition parameters, wastewater temperature and dilution by fresh/saltwater infiltration may result in a significant change to the virus decay, in terms of both infectivity and Ribonucleic Acid (RNA). This paper reviewed the literature to identify and discuss the effects of temperature and water types (i.e., wastewater, freshwater, and seawater) on coronavirus decay based on the decay rate constants that were collected from published papers. To evaluate the importance of virus decay, a sensitivity analysis was then conducted with decay rates of SARS-CoV-2 RNA based on a WBE back-calculation equation. Finally, the decay rates of coronavirus in wastewater were also compared with those of other viruses to further understand the difference among virus species. The decay of SARS-CoV-2 RNA was found to be less impacted by temperature variation than viable coronaviruses. Nevertheless, WBE back-calculation was still sensitive to the RNA decay rates increased by warm wastewater (i.e., over 26 °C), which could lead to a two-times higher relative variance in estimated COVID-19 prevalence, considering the wastewater temperature variation between 4 and 37 °C in a sewer catchment with a 12-h hydraulic retention time. Comparatively, the sensitivity of the WBE estimation to the enveloped SARS-CoV-2 was greater than nonenveloped enteric viruses, which were less easily degradable in wastewater. In addition, wastewater dilution by stormwater inflow and accompanied cold weather might alleviate the decay of coronavirus infectivity, thus increasing the potential risk of COVID-19 transmission through wastewater. Overall, this paper aims to better understand the impact of in-sewer processes on coronavirus decay and its potential implications for WBE. The outcome could quantitatively inform WBE and improve awareness of the increased risk of COVID-19 infection via wastewater during heavy rainfall events. Given the identified scarcity of data available for coronavirus decay in salt water or with chemical additions, future research on the fate of SARS-CoV-2 subjected to chemical dosing for sewer or wastewater treatment plant operations is recommended. © 2023 by the authors.

9.
Eur J Immunol ; 53(6): e2250164, 2023 06.
Article in English | MEDLINE | ID: covidwho-2296074

ABSTRACT

The type I IFN (IFN-I) system is essential to limit severe viral disease in humans. Thus, IFN-I deficiencies are associated with serious life-threatening infections. Remarkably, some rare individuals with chronic autoimmune diseases develop neutralizing autoantibodies (autoAbs) against IFN-Is thereby compromising their own innate antiviral defenses. Furthermore, the prevalence of anti-IFN-I autoAbs in apparently healthy individuals increases with age, such that ∼4% of those over 70 years old are affected. Here, I review the literature on factors that may predispose individuals to develop anti-IFN-I autoAbs, such as reduced self-tolerance caused by defects in the genes AIRE, NFKB2, and FOXP3 (among others), or by generally impaired thymus function, including thymic involution in the elderly. In addition, I discuss the hypothesis that predisposed individuals develop anti-IFN-I autoAbs following "autoimmunization" with IFN-Is generated during some acute viral infections, systemic inflammatory events, or chronic IFN-I exposure. Finally, I highlight the enhanced susceptibility that individuals with anti-IFN-I autoAbs appear to have towards viral diseases such as severe COVID-19, influenza, or herpes (e.g., varicella-zoster virus, herpes simplex virus, cytomegalovirus), as well as adverse reactions to live-attenuated vaccines. Understanding the mechanisms underlying development and consequences of anti-IFN-I autoAbs will be key to implementing effective prophylactic and therapeutic measures.


Subject(s)
COVID-19 , Interferon Type I , Virus Diseases , Humans , Aged , Autoantibodies , Prevalence , Disease Susceptibility , Virus Diseases/epidemiology , Interferons
10.
Virol J ; 20(1): 64, 2023 04 07.
Article in English | MEDLINE | ID: covidwho-2295939

ABSTRACT

The mRNA vaccine technology was developed rapidly during the global pandemic of COVID-19. The crucial role of the COVID-19 mRNA vaccine in preventing viral infection also have been beneficial to the exploration and application of other viral mRNA vaccines, especially for non-replication structure mRNA vaccines of viral disease with outstanding research results. Therefore, this review pays attention to the existing mRNA vaccines, which are of great value for candidates for clinical applications in viral diseases. We provide an overview of the optimization of the mRNA vaccine development process as well as the good immune efficacy and safety shown in clinical studies. In addition, we also provide a brief description of the important role of mRNA immunomodulators in the treatment of viral diseases. After that, it will provide a good reference or strategy for research on mRNA vaccines used in clinical medicine with more stable structures, higher translation efficiency, better immune efficacy and safety, shorter production time, and lower production costs than conditional vaccines to be used as preventive or therapeutic strategy for the control of viral diseases in the future.


Subject(s)
COVID-19 , Viral Vaccines , Virus Diseases , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Viral Vaccines/genetics , Vaccination , RNA, Messenger/genetics , mRNA Vaccines , Vaccines, Synthetic/genetics
11.
Process Biochemistry ; 128:167-180, 2023.
Article in English | Scopus | ID: covidwho-2276759

ABSTRACT

Extracellular vesicles (EVs) are lipid bilayer nanovesicles generated by almost all living cells which possess various size ranges depending on producer cells and biogenesis mechanisms. Several EV markers were determined including tetraspanins (e.g., CD9, CD63 and CD81), heat shock proteins (HSP70 and HSP90), some 14–3–3 proteins (a family of conserved regulatory molecules), major histocompatibility complex molecules (MHC-I/-II), and enzymes (Glyceraldehyde 3-phosphate dehydrogenase and enolase-1). EVs are known as an abundant source of antigens and immune molecules that can be used for vaccine development in human and animals. EV-based immunization could significantly activate immune responses in different infections such as Porcine reproductive and respiratory syndrome virus (PRRSV), Lymphocytic choriomeningitis virus (LCMV), Marek's disease virus (MDV), and SARS-CoV-2 infections. The engineered and modified EVs showed a promising potential in development of anti-tumor vaccines and therapeutics, protection against parasitic diseases (e.g., Eimeria, and Plasmodium yoelii) and viral diseases (e.g., COVID-19), and improvement of biomarkers. Also, EVs possess a crucial role in antigen presentation in vivo. In this review, we describe the roles of EVs in vaccine development and therapeutic approaches for viral diseases. © 2023 Elsevier Ltd

12.
Nanotechnology Reviews ; 12(1), 2023.
Article in English | Scopus | ID: covidwho-2273002

ABSTRACT

Over the past two centuries, most pandemics have been caused by zoonotic RNA viruses with high mutation, infection, and transmission rates. Due to the importance of understanding the viruses' role in establishing the latest outbreak pandemics, we briefly discuss their etiology, symptomatology, and epidemiology and then pay close attention to the latest chronic communicable disease, SARS-CoV-2. To date, there are no generally proven effective techniques in the diagnosis, treatment, and spread strategy of viral diseases, so there is a profound need to discover efficient technologies to address these issues. Nanotechnology can be a promising approach for designing more functional and potent therapeutics against coronavirus disease 2019 (COVID-19) and other viral diseases. Moreover, this review intends to summarize examples of nanostructures that play a role in preventing, diagnosing, and treating COVID-19 and be a comprehensive and helpful review by covering notable and vital applications of nanotechnology-based strategies for improving health and environmental sanitation. © 2023 the author(s), published by De Gruyter.

13.
Dissertation Abstracts International: Section B: The Sciences and Engineering ; 83(12-B):No Pagination Specified, 2022.
Article in English | APA PsycInfo | ID: covidwho-2267229

ABSTRACT

The purpose of this study was to measure the correlation between knowledge of viral disease and disease risk perception, disease severity perception, and mask wearing during the COVID-19 pandemic by level of education, age, and gender at a community college in Phoenix, Arizona. Participants were recruited by an email sent to all students, faculty, and staff at PVCC using an all-college email distribution list. Disease risk and severity perception were assessed with the Brief Illness Perception Questionnaire 5, which was modified to include questions measuring participant age, education level, and whether they had ever taken a college biology course. Two additional question sets measured compliance of willingness to wear a face mask. Analysis showed a significant relationship between gender and mask wearing behavior and between knowledge of viral disease in combination with education level and the combined variables of disease risk perception, disease severity perception, and mask wearing behavior. No significant difference from having taken a biology course was found in risk perception, disease severity perception, and mask wearing behavior by age. The results suggest that formal higher education that includes a knowledge of viral disease influences how individuals perceive the severity and risk of COVID-19 and modify their mask wearing behavior accordingly. Gender influences people's willingness to wear a mask, even though it has no effect of risk perception or severity perception. The results can be used to modify existing health education strategies. (PsycInfo Database Record (c) 2022 APA, all rights reserved)

14.
BMC Med Inform Decis Mak ; 23(1): 48, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2278152

ABSTRACT

BACKGROUND: Outbreaks of infectious diseases are a complex phenomenon with many interacting factors. Regional health authorities need prognostic modeling of the epidemic process. METHODS: For these purposes, various mathematical algorithms can be used, which are a useful tool for studying the infections spread dynamics. Epidemiological models act as evaluation and prognosis models. The authors outlined the experience of developing a short-term predictive algorithm for the spread of the COVID-19 in the region of the Russian Federation based on the SIR model: Susceptible (vulnerable), Infected (infected), Recovered (recovered). The article describes in detail the methodology of a short-term predictive algorithm, including an assessment of the possibility of building a predictive model and the mathematical aspects of creating such forecast algorithms. RESULTS: Findings show that the predicted results (the mean square of the relative error of the number of infected and those who had recovered) were in agreement with the real-life situation: σ(I) = 0.0129 and σ(R) = 0.0058, respectively. CONCLUSIONS: The present study shows that despite a large number of sophisticated modifications, each of which finds its scope, it is advisable to use a simple SIR model to quickly predict the spread of coronavirus infection. Its lower accuracy is fully compensated by the adaptive calibration of parameters based on monitoring the current situation with updating indicators in real-time.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Algorithms , Disease Outbreaks , Russia/epidemiology
15.
Biotechnol Appl Biochem ; 69(5): 2028-2045, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2285281

ABSTRACT

Phytochemicals are the natural biomolecules produced by plants via primary or secondary metabolism, which have been known to have many potential health benefits to human beings. Flavonoids or phytoestrogens constitute a major group of such phytochemicals widely available in variety of vegetables, fruits, herbs, tea, and so forth, implicated in a variety of bio-pharmacological and biochemical activities against diseases including bacterial, viral, cancer, inflammatory, and autoimmune disorders. More recently, these natural biomolecules have been shown to have effective antiviral properties via therapeutically active ingredients within them, acting at different stages of infection. Current review emphasizes upon the role of these flavonoids in physiological functions, prevention and treatment of viral diseases. More so the review focuses specifically upon the antiviral effects exhibited by these natural biomolecules against RNA viruses including coronaviruses. Furthermore, the article would certainly provide a lead to the scientific community for the effective therapeutic antiviral use of flavonoids using potential cost-effective tools for improvement of the pharmacokinetics, bioavailability, and biodistribution of such compounds for the concrete action along with the promotion of human health.


Subject(s)
Antiviral Agents , Phytochemicals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Tissue Distribution , Phytochemicals/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/chemistry , Plant Extracts/chemistry , Polyphenols
16.
Trans R Soc Trop Med Hyg ; 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2279143

ABSTRACT

BACKGROUND: Mucormycosis infection is a complication seen in some coronavirus disease 2019 (COVID-19) patients. This study compares the characteristics of mucormycosis infection between COVID-19 and non-COVID-19 patients. METHODS: This retrospective cohort comprised 87 patients with mucormycosis divided into two groups. The first included 44 patients who had COVID-19 recently before hospitalization due to mucormycosis at Namazi Hospital, Shiraz, Iran, between February 2019 and August 2021. The second group included all 43 patients hospitalized at the same hospital due to mucormycosis between 2010 and 2019 (pre-pandemic). RESULTS: Mucormycosis patients with a history of recent COVID-19 infection had a higher rate of diabetes mellitus, fewer malignancies and higher blood glucose, erythrocyte sedimentation rate and C-reactive protein levels (p<0.05). Glucocorticoid use was common (77%) in the COVID-19 group. CONCLUSIONS: In the pre-COVID-19 era, mucormycosis mainly affected immunodeficient patients like those receiving chemotherapy due to malignancy but now seems to affect COVID-19 patients with uncontrolled blood glucose and glucocorticoids use. Special care must be taken in prescribing glucocorticoids and controlling the blood glucose levels of COVID-19 patients.

17.
Proc Nutr Soc ; : 1-12, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-2277927

ABSTRACT

In this review, the relevance of selenium (Se) to viral disease will be discussed paying particular attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19). Se, the active centre in selenoproteins has an ongoing history of reducing the incidence and severity of viral infections. Host Se deficiency increased the virulence of RNA viruses such as influenza A and coxsackievirus B3, the latter of which is implicated in the development of Keshan disease in north-east China. Significant clinical benefits of Se supplementation have been demonstrated in HIV-1, in liver cancer linked to hepatitis B, and in Chinese patients with hantavirus that was successfully treated with oral sodium selenite. China is of particular interest because it has populations that have both the lowest and the highest Se status in the world. We found a significant association between COVID-19 cure rate and background Se status in Chinese cities; the cure rate continued to rise beyond the Se intake required to optimise selenoproteins, suggesting an additional mechanism. Se status was significantly higher in serum samples from surviving than non-surviving COVID-19 patients. As regards mechanism, SARS-CoV-2 may interfere with the human selenoprotein system; selenoproteins are important in scavenging reactive oxygen species, controlling immunity, reducing inflammation, ferroptosis and endoplasmic reticulum (ER) stress. We found that SARS-CoV-2 significantly suppressed mRNA expression of GPX4, of the ER selenoproteins, SELENOF, SELENOM, SELENOK and SELENOS and down-regulated TXNRD3. Based on the available data, both selenoproteins and redox-active Se species (mimicking ebselen, an inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host) could employ their separate mechanisms to attenuate virus-triggered oxidative stress, excessive inflammatory responses and immune-system dysfunction, thus improving the outcome of SARS-CoV-2 infection.

18.
Aerosol and Air Quality Research ; 23(1), 2023.
Article in English | Scopus | ID: covidwho-2246160

ABSTRACT

Airborne transmission of respiratory viruses consists of three sequential steps: (1) release of respiratory fluids in the form of droplets from the nose and mouth of an infected person, (2) transport of the droplets through air, and (3) entry of the droplets into the nose and mouth of an uninfected individual. Talking, coughing, and sneezing emit droplets across a spectrum of sizes. The water in exhaled droplets begins to evaporate in air and, as a result, the droplets are reduced in size shortly after being emitted. Face masks are effective for capturing droplets just released from the nose and mouth. Studies indicate that more than 50% of community transmission of SARS-CoV-2 is from asymptomatic and pre-symptomatic cases. Use of face masks by the public can effectively reduce the chance of infected individuals unknowingly spreading the virus. In addition to being an effective device for source control, face masks can protect the wearers from inhaling virus-laden droplets. Cloth masks and disposable masks provide reasonable protection for the public, while surgical masks and N95 respirators give higher levels of protection as needed in healthcare settings. Made with varied materials, these masks have different structural characteristics. The collection efficiency of a face mask depends on droplet size, face velocity, and the structural characteristics of the mask. For a given mask, capturing droplets is more effective during exhalation than during inhalation. Pressure drop across the mask should be taken into consideration when selecting a face mask. The best face mask is the one that gives the highest collection efficiency with the least pressure drop. For an effective protection, a mask should fit the face properly. While face masks have proven adequate in reducing airborne transmission of SARS-CoV-2 infections, continuous improvement is needed to better prepare for future respiratory viral threats. © The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

19.
J Med Virol ; 95(2): e28572, 2023 02.
Article in English | MEDLINE | ID: covidwho-2244758

ABSTRACT

Messenger RNA (mRNA) vaccines against COVID-19 are the first authorized biological preparations developed using this platform. During the pandemic, their administration has been proven to be a life-saving intervention. Here, we review the main advantages of using mRNA vaccines, identify further technological challenges to be met during the development of the mRNA platform, and provide an update on the clinical progress on leading mRNA vaccine candidates against different viruses that include influenza viruses, human immunodeficiency virus 1, respiratory syncytial virus, Nipah virus, Zika virus, human cytomegalovirus, and Epstein-Barr virus. The prospects and challenges of manufacturing mRNA vaccines in low-income countries are also discussed. The ongoing interest and research in mRNA technology are likely to overcome some existing challenges for this technology (e.g., related to storage conditions and immunogenicity of some components of lipid nanoparticles) and enhance the portfolio of vaccines against diseases for which classical formulations are already authorized. It may also open novel pathways of protection against infections and their consequences for which no safe and efficient immunization methods are currently available.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Influenza Vaccines , Respiratory Syncytial Virus, Human , Viral Vaccines , Virus Diseases , Zika Virus Infection , Zika Virus , Humans , COVID-19 Vaccines , Herpesvirus 4, Human/genetics , Respiratory Syncytial Virus, Human/genetics , RNA, Messenger , Zika Virus/genetics
20.
Genes (Basel) ; 14(2)2023 Feb 19.
Article in English | MEDLINE | ID: covidwho-2241040

ABSTRACT

Recently, several studies have highlighted a skewed prevalence of infectious diseases within the African continent. Furthermore, a growing number of studies have demonstrated unique genetic variants found within the African genome are one of the contributing factors to the disease severity of infectious diseases within Africa. Understanding the host genetic mechanisms that offer protection against infectious diseases provides an opportunity to develop unique therapeutic interventions. Over the past two decades, several studies have linked the 2'-5'-oligoadenylate synthetase (OAS) family with a range of infectious diseases. More recently, the OAS-1 gene has also been associated with disease severity caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to a global pandemic. The OAS family serves as an antiviral factor through the interaction with Ribonuclease-Latent (RNase-L). This review explores the genetic variants observed within the OAS genes and the associations with various viral infections and how previously reported ethnic-specific polymorphisms drive clinical significance. This review provides an overview of OAS genetic association studies with a particular focus on viral diseases affecting individuals of African descent.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adenine Nucleotides , Oligoribonucleotides
SELECTION OF CITATIONS
SEARCH DETAIL